diaspara database creation script

DIASPARA WP3.2 working document

Creation of the migdb Migratory fishes database, version = build
Author

Briand Cédric, Oliviero Jules, Helminen Jani

Published

19-01-2025

The main structure of the database has been proposed during the online diaspara meeting : database structure. This stucture would allow to store the data necessary to run the international stock models for the different working groups working on diadromous fishes. The structure of the proposed database and the structure of the wgeel database are very similar. This documents creates the diaspara database, first creating referential table for the different types proposed, and then populates the database with the contents of the wgeel and wgnas database. All chunks are run sequentially to run the database, but some are later marked with eval = FALSE to speed up the process of running the quarto document.

Hierarchical structure of the database

The database could start with the simplest structure, with a basic table corresponding to all data. Then three tables could be created, one per species. This is to allow querying the different tables independently. From these species tables, three different tables could be produced, one for data, one for parameters outputs, one for parameters priors. Since SQL server does not handle inheritance, once the table built, some of those will have to be replaced with views or partitioned views.

From these three table on could envisage the creation of specific table for working groups. Meaning one table for eel (wgeel), one table for salmon (wgnas), one table for salmon (wgbast), and one table for trutta (wgtrutta).

Referential tables

[TO BE EDITED LATER WHEN WE KNOW EXACTLY WHAT WE HAVE DONE]

Similarly, referential tables could be created with a mother table from which specific (or wg specific) tables would inherit. All mother table will be held in a schema called ref. Having working group specific tables make the setting up of consistent foreign key more easy. For instance wgbast could reference different age class than wgnas, and the stage would be completely different between wgeel and wgnas reference daughter tables. Some of these referential table would be common between species (e.g. source from ICES vocab, which corresponds to working group or accession events (datacalls)).

Unicity constraints

Another important point to add (at least to the salmoglob database) is unicity constraint. As some values would be null, creating unicity constraints with indexes would be necessary. These allow to have different levels of constraints for instance the unicity would be defined for : (year, age, area, parameter) (year, age, parameter) (year, area, parameter) (year, parameter)

One of the table will have to contain twice the area it will have to be treated separately. (year, area, area, parameter)

Creating the diaspara database

All along this document, the database will be named diaspara. The database is created with postgres.

Some rules

  • By default values will be capitalised for the first letter e.g. Public for the code in dataaccess.

  • Code ELE, ANG, TRT are capitalized, as are the working group names WGEEL, WGNAS, or country codes.

  • Units are lowercase e.g. g, mm …

  • All integer used for primary keys are called id all text used for primary keys are called code, the text is always called description.

  • All tables end with a 3 letter summary which allows to identify the source of one column so the table dataaccess will be called tr_dataaccess_dta. And the column for code will be named

  • Referential tables or dictionaries are called tr_(sometable), tables build in conjuction from other tables and not in the dictionaries are called t_(sometable).

  • Foreign key are used instead of check constrainst as check constraint might not ensure the integrity of data after their integration (only when new rows are created or modified).

  • Foreign key are name fk_columnname where the column name is the name in the table

  • Primary keys are names tablename_pkey (with the constraint possibly referering to more than one column).

  • Other constraints are check constraints ck_columnname and unique contraints uk_columnname

  • All tables and column have a definition, we will ask the working groups to check those.

  • Column and table name are ALWAYS LOWERCASE, the underscore is only used to separate type of table and table shortcode t_table_abc. In column is separates table code abc_def_code (table abc will reference the column def_code in table def).

This is run in localhost, check the wp3_habitat repository for code to set up access to the database. In the future we will grant diaspara_admin and diaspara_read to specific users for example with a used named trout GRANT diaspara_admin TO trout ;

DIASPARA Note to self

need to edit the pb_hba.conf on the server if not in localhost to allow access to diaspara.

Code to create the diaspara DB
dbExecute(con_diaspara_admin, "DROP schema if exists ref CASCADE;");
dbExecute(con_diaspara_admin, "CREATE schema ref;")
dbExecute(con_diaspara_admin, "GRANT ALL PRIVILEGES ON SCHEMA ref TO diaspara_admin ;")
dbExecute(con_diaspara_admin, "GRANT ALL PRIVILEGES ON SCHEMA public TO diaspara_read ;")
dbExecute(con_diaspara_admin, paste0("GRANT CONNECT ON DATABASE ",cred$dbnamediaspara," TO diaspara_read;"))
dbExecute(con_diaspara_admin, paste0("ALTER DATABASE ",cred$dbnamediaspara," OWNER TO diaspara_admin;"))
dbExecute(con_diaspara_admin, "DROP schema if exists refeel CASCADE;");
dbExecute(con_diaspara_admin, "CREATE SCHEMA refeel;")
dbExecute(con_diaspara_admin, "ALTER SCHEMA refeel OWNER TO diaspara_admin;")
dbExecute(con_diaspara_admin, "DROP schema if exists refnas CASCADE;");
dbExecute(con_diaspara_admin, "CREATE SCHEMA refnas;")
dbExecute(con_diaspara_admin, "ALTER SCHEMA refnas OWNER TO diaspara_admin;")
dbExecute(con_diaspara_admin, "DROP schema if exists refbast CASCADE;");
dbExecute(con_diaspara_admin, "CREATE SCHEMA refbast;")
dbExecute(con_diaspara_admin, "ALTER SCHEMA refbast OWNER TO diaspara_admin;")
dbExecute(con_diaspara_admin, "DROP schema if exists reftrutta CASCADE;");
dbExecute(con_diaspara_admin, "CREATE SCHEMA reftrutta;")
dbExecute(con_diaspara_admin, "ALTER SCHEMA reftrutta OWNER TO diaspara_admin;")

# Create foreign data wrapper to wgeel database

dbExecute(con_diaspara_admin, "CREATE EXTENSION IF NOT EXISTS postgres_fdw;")

dbExecute(con_diaspara_admin,"
CREATE SERVER wgeel_data_wrapper
  FOREIGN DATA WRAPPER postgres_fdw
  OPTIONS (host 'localhost', port '5432', dbname 'wgeel');")
dbExecute(con_diaspara_admin,"
CREATE SERVER wgnas_data_wrapper
  FOREIGN DATA WRAPPER postgres_fdw
  OPTIONS (host 'localhost', port '5432', dbname 'salmoglob');")
dbExecute(con_diaspara_admin,"
CREATE USER MAPPING FOR USER
  SERVER wgeel_data_wrapper
  OPTIONS (user 'postgres', password 'postgres');")
dbExecute(con_diaspara_admin,"  
CREATE SCHEMA refwgeel;")
dbExecute(con_diaspara_admin,"IMPORT FOREIGN SCHEMA ref    
    FROM SERVER wgeel_data_wrapper
    INTO refwgeel;")

dbExecute(con_diaspara_admin, paste0("COMMENT ON DATABASE ",cred$dbnamediaspara," IS 'This database is named Frankenstein :-)'"))    
dbExecute(con_diaspara_admin,
"GRANT ALL PRIVILEGES ON SCHEMA refwgeel TO diaspara_admin;")
SQL code to additional data schema
Listing 1: Building additional schema
--| echo: TRUE
--| eval: FALSE


-- this one is straight into sql ... 

DROP SCHEMA IF EXISTS dat CASCADE;
CREATE SCHEMA dat;
ALTER SCHEMA dat OWNER TO diaspara_admin;
COMMENT ON SCHEMA dat IS 'SCHEMA common to all migratory fish, filled by inheritance';

DROP SCHEMA IF EXISTS datang CASCADE;
CREATE SCHEMA datang;
ALTER SCHEMA datang OWNER TO diaspara_admin;
COMMENT ON SCHEMA datang IS 'SCHEMA for WGEEL';

DROP SCHEMA IF EXISTS datnas CASCADE;
CREATE SCHEMA datnas;
ALTER SCHEMA datnas OWNER TO diaspara_admin;
COMMENT ON SCHEMA datnas IS 'SCHEMA for WGNAS';

DROP SCHEMA IF EXISTS datbast CASCADE;
CREATE SCHEMA datbast;
ALTER SCHEMA datbast OWNER TO diaspara_admin;
COMMENT ON SCHEMA datbast IS 'SCHEMA for WGBAST';


DROP SCHEMA IF EXISTS dattrutta CASCADE;
CREATE SCHEMA dattrutta;
ALTER SCHEMA dattrutta OWNER TO diaspara_admin;
COMMENT ON SCHEMA dattrutta IS 'SCHEMA for WKTRUTTA';

Now the database has been created with different schema (Figure 1). The main schema for dictionaries is ref, and a schema is created per working group for specific referential tables. The Schema refwgeel is a schema created with a foreign data wrapper to get the data from wgeel, the same schema exists for wgnas. We’ll see later for wgbast and wgtrutta.

schema ref ref        tr_species_spe        tr_country_cou        tr_icworkinggroup_wkg        tr_version_ver        tr_metric_mtr        tr_category_cat        tr_outcome_oco        tr_metadata_met        tr_area_are refeel refeel                               refeel->ref dateel dateel                               dateel->ref dateel->refeel refbast refbast                               refbast->ref datbast datbast                               datbast->ref datbast->refbast refnas refnas                               refnas->ref datnas datnas                               datnas->ref datnas->refnas reftrutta reftrutta                               reftrutta->ref dattrutta dattrutta                               dattrutta->ref dattrutta->reftrutta refwgeel refwgeel refwgeel->ref refwgeel->refeel salmoglob salmoglob salmoglob->ref salmoglob->refnas
Figure 1: Structure of the schema in diaspara. Dashed arrow indicate an import of data from existing

Now the database has been created with different schema (Figure 1). The main schema for dictionaries is ref, and a schema is created per working group for specific referential tables. The Schema refwgeel has been filled in with a foreign data wrapper to get the data from wgeel, the same schema exists for wgnas. We’ll see later for wgbast and wgtrutta. The schema dat is the common schema for all data. For each working group, schema datbast, dateel, datnas are created. The tables will be created in dat and later similar or a bit more complex tables (with some more columns) will be created using the INHERIT FROM syntax, which will allow to have a hierarchical structure in the db, and maintain the structure in a table common to all fishes. Note thatdat should not containt any data, but will hold all the views and inherited tables comming from the different schema.

Creating referentials

Species (tr_species_spe)

The first thing is to create a referential table for species. Anyways, we searched a bit for other species, even if we don’t plan to start storing data on Alosa and Lamprey it’s good to prepare the database. There are no code in ICES vocal for Alosa alosa, Alosa fallax, Petromyzon marinus, Lampetra fluviatilis.

Note Cédric : Thinking later about this, I chose to get rid of ELE and select ANG. This column with species will be everywhere. We want to avoid generations of researchers to avoid what ELE is (apart from elephants). For the others I’ve taken as close as possible to the latin name.

QUESTION ICES: species code

ANG, ALA, ALF, PET, LAM are these internal code OK ? Should we use SpecWoRMS or is Aphia OK ?

Creating a referential table for species - code and queries to ICES
# No code for Lampetra, Alosa, petromyzon
sp <- getCodeList("IC_Species")
grep("Lampetra", sp$description)
integer(0)
grep("Petromyzon", sp$description)
integer(0)
grep("Alosa",  sp$description)
integer(0)
bind_rows(
  ele <- getCodeDetail("IC_Species","ELE")$detail,
  sal <- getCodeDetail("IC_Species","SAL")$detail,
  trs <- getCodeDetail("IC_Species","TRS")$detail) %>%
knitr::kable(caption = "Codes for migratory species in ICES, no code found for other species (Lamprey, Alosa ...)") %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
if (file.exists("data/tr_species_spe_temp.Rdata")) {
  load("data/tr_species_spe_temp.Rdata") } else {
  species_list <- tibble(
    spe_code = c("SAL", "ANG", "TRT", "ALA", "ALF", "PET", "LAM"),
    spe_icspecieskey = c("SAL", "ELE", "TRT", NA,NA,NA,NA),
    spe_commonname = c("Atlantic salmon", "European eel", "Sea trout", "Twait shad", "Allis shad", "Sea lamprey", "European river lamprey"),
    spe_scientificname = c("Salmo salar", "Anguilla anguilla", "Salmo trutta", "Alosa alosa", "Alosa fallax", "Petromyzon marinus", "Lampetra fluviatilis")
  )
  tr_species_spe_temp <- species_list %>%
    rowwise() %>%
    mutate(
      spe_codeaphia = findAphia(spe_scientificname, latin = TRUE)
    ) %>%
    ungroup()
  save(tr_species_spe_temp, file = "data/tr_species_spe_temp.Rdata")
  }
  knitr::kable(tr_species_spe_temp) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Table 1: Species in ICES
(a) Code found in IC_Species
Key Description LongDescription Modified Deprecated
ELE Anguilla anguilla NA 2019-04-15 FALSE
SAL Salmo salar NA 2019-04-15 FALSE
TRS Salmo trutta NA 2019-04-15 FALSE
(b) Three letter code for species. Should we use ang instead of ele ?
spe_code spe_commonname spe_scientificname spe_codeaphia
SAL Atlantic salmon Salmo salar 127186
ELE European eel Anguilla anguilla 126281
TRT Sea trout Salmo trutta 127187
ALA Twait shad Alosa alosa 126413
ALF Allis shad Alosa fallax 126415
SLP Sea lamprey Petromyzon marinus 101174
RLP European river lamprey Lampetra fluviatilis 101172
dbExecute(con_diaspara_admin, "DROP TABLE IF EXISTS ref.tr_species_spe;")
dbExecute(con_diaspara_admin,"CREATE TABLE ref.tr_species_spe (
     spe_code CHARACTER VARYING(3) PRIMARY KEY,
     spe_commonnname TEXT,
     spe_scientificname TEXT,
     spe_codeaphia numeric NOT NULL,
     spe_description TEXT)");
dbExecute(con_diaspara_admin, "GRANT ALL ON TABLE ref.tr_species_spe to diaspara_admin")
dbExecute(con_diaspara_admin, "GRANT SELECT ON TABLE ref.tr_species_spe to diaspara_read")
dbWriteTable(conn=con_diaspara, name = "tr_species_spe_temp", value = tr_species_spe_temp, overwrite = TRUE)
dbExecute(con_diaspara,"INSERT INTO ref.tr_species_spe SELECT * FROM tr_species_spe_temp")#7
dbExecute(con_diaspara,"DROP TABLE tr_species_spe_temp")
dbExecute(con_diaspara_admin, "COMMENT ON TABLE  ref.tr_species_spe IS 
'Table of fish species, spe_code SAL, ANG, TRT, ALA, ALF, PET, LAM, with 
reference to ICES vocabularies.'")
Table 2: Working groups table in the diaspara DB
spe_code spe_commonnname spe_scientificname spe_codeaphia spe_description
SAL Atlantic salmon Salmo salar 127186 NA
ELE European eel Anguilla anguilla 126281 NA
TRT Sea trout Salmo trutta 127187 NA
ALA Twait shad Alosa alosa 126413 NA
ALF Allis shad Alosa fallax 126415 NA
SLP Sea lamprey Petromyzon marinus 101174 NA
RLP European river lamprey Lampetra fluviatilis 101172 NA

Working group (tr_icworkinggroup_wkg)

Species is not enough. Data will be split by working groups. Several working groups working on the same species. There is a table for working group. Proposed table is Table 3 but need confirmation for WKTRUTTA2.

QUESTION ICES/ WGTRUTTA/ DIASPARA

what is the latest working group for WGTRUTTA, I found a WKTRUTTA2 but that is quite old. Do we want to refer to other groups on diadromous fishes there ? The name of the WGEEL is wrong in the referential, needs to reference GFCM… JOINT EIFAAC/ICES/GFCM WORKING GROUP ON EEL.

Code to create reference table for working groups
dbExecute(con_diaspara_admin,
"DROP TABLE IF EXISTS ref.tr_icworkinggroup_wkg CASCADE;")
dbExecute(con_diaspara_admin,
"CREATE TABLE ref.tr_icworkinggroup_wkg (
wkg_code TEXT PRIMARY KEY,
wkg_description TEXT,
wkg_icesguid uuid
);")

dbExecute(con_diaspara_admin, "COMMENT ON TABLE ref.tr_icworkinggroup_wkg 
IS 'Table corresponding to the IC_WorkingGroup referential;';")
# Using the jsonlite to download the guid also
tbl <- jsonlite::fromJSON(
  "https://vocab.ices.dk/services/api/Code/3f6fb38a-a3c5-4f5c-bf31-2045e12536ee")



temp_tr_icworkinggroup_wkg <- tbl %>%
  select(key,description,guid) %>%
  rename(wkg_code = key,
         wkg_description = description,
         wkg_icesguid = guid)%>%
  filter(wkg_code %in% c("WGEEL", "WGNAS", "WGBAST"))
temp_tr_icworkinggroup_wkg <- bind_rows(temp_tr_icworkinggroup_wkg,
                                        data.frame(wkg_code="WKTRUTTA"))

dbWriteTable(con_diaspara_admin, 
             "temp_tr_icworkinggroup_wkg", 
             temp_tr_icworkinggroup_wkg)

dbExecute(con_diaspara_admin, "INSERT INTO ref.tr_icworkinggroup_wkg 
          SELECT 
          wkg_code,
          wkg_description,
          wkg_icesguid::uuid
         FROM temp_tr_icworkinggroup_wkg;") #4
dbExecute(con_diaspara_admin, "DROP TABLE temp_tr_icworkinggroup_wkg;")

dbExecute(con_diaspara_admin, "COMMENT ON COLUMN 
ref.tr_icworkinggroup_wkg.wkg_code IS 
'Working group code uppercase, WGEEL, WGNAS, WGBAST, WGTRUTTA';")


dbExecute(con_diaspara_admin, "GRANT ALL ON ref.tr_icworkinggroup_wkg 
          TO diaspara_admin;")
dbExecute(con_diaspara_admin, "GRANT SELECT ON ref.tr_icworkinggroup_wkg 
          TO diaspara_read;")
Table 3: Working groups table in the diaspara DB
wkg_code wkg_description wkg_icesguid
WGBAST Baltic Salmon and Trout Assessment Working Group 2cac261d-c837-459a-961b-e63e36cc19ec
WGEEL Joint EIFAAC/ICES Working Group on Eels 7c13a79e-7855-4d0b-b567-21300bcaaf9a
WGNAS Working Group in North Atlantic Salmon b5fd158e-b153-4e2e-a6da-c4b0536d684e
WKTRUTTA NA NA

Country (tr_country_cou)

Countries are mostly OK in the wgeel database but we need to add american countries. The shapefiles have been downloaded from https://gisco-services.ec.europa.eu/distribution/v2/countries/download/#countries source EuroGeographics and UN-FAO. Countries (Table 4) are ordered from North to South starting from the Baltic and ending in the Mediterranean, with American number being the highest in order.

Code to create table from wgeel and NUTS
dbExecute(con_diaspara_admin, "DROP TABLE IF EXISTS ref.tr_country_cou;")
dbExecute(con_diaspara_admin, "CREATE TABLE ref.tr_country_cou (
    cou_code character varying(2) NOT NULL,
    cou_country text NOT NULL,
    cou_order integer NOT NULL,
    geom public.geometry,
    cou_iso3code character varying(3)
);")


dbExecute(con_diaspara_admin,
          "INSERT INTO ref.tr_country_cou 
          SELECT * FROM refwgeel.tr_country_cou;") #40
# Add some constraints
dbExecute(con_diaspara_admin, "ALTER TABLE ref.tr_country_cou 
          ADD CONSTRAINT t_country_cou_pkey PRIMARY KEY (cou_code);")
dbExecute(con_diaspara_admin, "ALTER TABLE ref.tr_country_cou 
          ADD CONSTRAINT uk_cou_iso3code UNIQUE (cou_iso3code);")

# missing values from America downloaded from https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/ref-nuts-2024-01m.gdb.zip
# uploaded to postgres

# the tables

# ref-countries-2024-01m — CNTR_RG_01M_2024_4326
# have been copied to folder area ref-countries was renamed
# ALTER TABLE area."ref-countries-2024-01m — CNTR_RG_01M_2024_4326" 
# RENAME TO "ref-countries-2024-01m-4326";


dbExecute(con_diaspara_admin,
"INSERT INTO ref.tr_country_cou ( cou_code,
    cou_country,    
    cou_iso3code,
    geom, 
    cou_order)
SELECT \"CNTR_ID\" AS cou_code, \"NAME_ENGL\" AS cou_country,  \"ISO3_CODE\" 
AS cou_isocode, geom,
CASE WHEN \"CNTR_ID\" = 'GL' THEN 47
     WHEN \"CNTR_ID\" = 'CA' THEN 48
     ELSE 49 END AS cou_order
FROM  area.\"ref-countries-2024-01m-4326\"
WHERE \"CNTR_ID\" IN ('GL', 'CA', 'US');") #3

# Svalbard et Jan Mayen SJM NO Territory    
dbExecute(con_diaspara_admin,
"INSERT INTO ref.tr_country_cou ( cou_code,
    cou_country,    
    cou_iso3code,
    geom, 
    cou_order)
SELECT \"CNTR_ID\" AS cou_code, \"NAME_ENGL\" AS cou_country,  \"ISO3_CODE\" 
AS cou_isocode, geom,
CASE WHEN \"CNTR_ID\" = 'GL' THEN 47
     WHEN \"CNTR_ID\" = 'CA' THEN 48
     ELSE 49 END AS cou_order
FROM  area.\"ref-countries-2024-01m-4326\"
WHERE \"CNTR_ID\" IN ('SJ');") #3

dbExecute(con_diaspara_admin,
"UPDATE ref.tr_country_cou 
SET geom = nuts.geom  
FROM  area.\"ref-countries-2024-01m-4326\" nuts 
WHERE nuts.\"CNTR_ID\" = tr_country_cou.cou_code;") # 40

dbExecute(con_diaspara_admin,"COMMENT ON TABLE ref.tr_country_cou IS
          'Table of country codes source EuroGeographics and UN-FAO.';")
dbExecute(con_diaspara_admin,"ALTER TABLE ref.tr_country_cou 
          OWNER TO diaspara_admin;")
dbExecute(con_diaspara_admin,
          "GRANT SELECT ON TABLE ref.tr_country_cou TO diaspara_read;")
tr_country_cou <- dbGetQuery(con_diaspara, "SELECT cou_code,cou_country,cou_order, cou_iso3code FROM ref.tr_country_cou order by cou_order")
knitr::kable(tr_country_cou) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Table 4: Country table in the diaspara DB
cou_code cou_country cou_order cou_iso3code
IS Iceland 0 ISL
NO Norway 1 NOR
SE Sweden 2 SWE
AX Åland 3 ALA
FI Finland 4 FIN
EE Estonia 5 EST
LV Latvia 6 LVA
LT Lithuania 7 LTU
RU Russia 8 RUS
PL Poland 9 POL
CZ Czech republic 10 CZE
DE Germany 11 DEU
DK Denmark 12 DNK
NL Netherlands 13 NLD
BE Belgium 14 BEL
LU Luxembourg 15 LUX
IE Ireland 16 IRL
GB Great Britain 17 GBR
FR France 18 FRA
ES Spain 19 ESP
PT Portugal 20 PRT
IT Italy 21 ITA
MT Malta 22 MLT
SI Slovenia 23 SVN
HR Croatia 24 HRV
BA Bosnia-Herzegovina 25 BIH
ME Montenegro 26 MNE
AL Albania 27 ALB
GR Greece 28 GRC
TR Turkey 34 TUR
CY Cyprus 35 CYP
SY Syria 36 SYR
LB Lebanon 37 LBN
IL Israel 38 ISR
EG Egypt 39 EGY
LY Libya 40 LBY
TN Tunisia 41 TUN
DZ Algeria 42 DZA
MA Morocco 43 MAR
VA Vattican 46 VAT
GL Greenland 47 GRL
CA Canada 48 CAN
US United States 49 USA
SJ Svalbard and Jan Mayen 49 SJM
Code to create map from table in R
if (file.exists("data/country_sf.Rdata")) load("data/country_sf.Rdata") else {
country_sf <- sf::st_read(con_diaspara,
                          query = "SELECT cou_code, ST_MakeValid(geom) 
                          from ref.tr_country_cou") %>%
  sf::st_transform(4326) 
save(country_sf, file="data/country_sf.Rdata")
}
#see here : https://stackoverflow.com/questions/70756215/
#plot-geodata-on-the-globe-perspective-in-r
# Note there is a problem of geometry for some of the polygons, and this require 
# ST_Makevalid before intersection

# projection string used for the polygons & ocean background
crs_string <- "+proj=ortho +lon_0=-30 +lat_0=30"

# background for the globe - center buffered by earth radius
ocean <- sf::st_point(x = c(0,0)) %>%
  sf::st_buffer(dist = 6371000) %>%
  sf::st_sfc(crs = crs_string)
country_sf2 <-  country_sf %>% 
  sf::st_intersection(ocean %>% sf::st_transform(4326)) %>% 
  # select visible area only
  sf::st_transform(crs = crs_string) # reproject to ortho
# now the action!
g <- ggplot(data = country_sf2) +
  geom_sf(data = ocean, fill = "aliceblue", color = NA) + # background first
  geom_sf(aes(fill = cou_code), lwd = .1) + # now land over the oceans
  scale_fill_discrete(guide = "none") +
  theme_void()

# this part is used to avoid long computations
png(filename="images/fig-country.png", bg="transparent")
print(g)
dev.off()
Figure 2: Map of countries in the diaspara DB © EuroGeographics

Unit (tr_units_uni)

Creating the unit from wgeel and checking ICES code

First we import from wgeel

Then we standarize using ICES codes, it takes a while to scroll through the vocab. Sometimes several vocab are available for the same thing. We used the p06 as the most common source. Hopefully that was the right choices ?

dbExecute(con_diaspara_admin, "DROP TABLE IF EXISTS ref.tr_units_uni CASCADE;")

dbExecute(con_diaspara_admin,
"CREATE TABLE ref.tr_units_uni (
    uni_code varchar(20) NOT NULL,
    uni_description text NOT NULL,
  uni_icesvalue character varying(4),  uni_icesguid uuid,
  uni_icestablesource text,
    CONSTRAINT t_units_uni_pkey PRIMARY KEY (uni_code),
    CONSTRAINT uk_uni_description UNIQUE (uni_description),
  CONSTRAINT uk_uni_icesguid UNIQUE (uni_icesguid),
  CONSTRAINT uk_uni_icesvalue UNIQUE (uni_icesvalue)
);")

dbExecute(con_diaspara_admin,"INSERT INTO ref.tr_units_uni (
uni_code, uni_description)
SELECT * FROM refwgeel.tr_units_uni;")#25

dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='KGXX' 
          where uni_code = 'kg';") 
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='MTON'
          where uni_code = 't';") 
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UCNT' 
          where uni_code = 'nr';") 
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UGRM' 
          where uni_code = 'g';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UPMS'
          where uni_code = 'nr/m2';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UPMM' 
          where uni_code = 'nr/m3';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UYRS' 
          where uni_code = 'nr year';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UXMM' 
          where uni_code = 'mm';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='NGPG' 
          where uni_code = 'ng/g';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='HCTR' 
          where uni_code = 'ha';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UTAA' 
          where uni_code = 'nr day';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='NOPH'
          where uni_code = 'nr/h';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='NGPG'
          where uni_code = 'ng/g';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='UPCT'
          where uni_code = 'percent';")
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set 
          (uni_icesvalue, uni_description)=
          ('XXXX', 'Not applicable (without unit)')
          where uni_code = 'wo';")          

dbExecute(con_diaspara_admin, "INSERT INTO ref.tr_units_uni 
          VALUES ('year-1', 'Per year', 'XXPY');")          
dbExecute(con_diaspara_admin, "INSERT INTO ref.tr_units_uni 
          VALUES ('s', 'Seconds', 'UTBB');")



p06 <- icesVocab::getCodeList('p06')
SamplingUnit <- icesVocab::getCodeList('SamplingUnit')
uni <- dbGetQuery(con_diaspara_admin, "SELECT * FROM ref.tr_units_uni;")
tempuni <- inner_join(uni, p06, by=join_by(uni_icesvalue==Key))
dbWriteTable(con_diaspara_admin, "tempuni", tempuni, overwrite=TRUE)
dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni 
set uni_icesguid = \"GUID\"::uuid
          FROM tempuni 
          where tempuni.uni_icesvalue=tr_units_uni.uni_icesvalue;") #16
dbExecute(con_diaspara_admin, "DROP TABLE tempuni;")

dbExecute(con_diaspara_admin,
"UPDATE ref.tr_units_uni set uni_icestablesource = 'p06' where uni_icesvalue 
IS NOT NULL AND
uni_icestablesource IS NULL;") # 16

query <- sprintf("INSERT INTO ref.tr_units_uni (uni_code,uni_description, uni_icesvalue, uni_icestablesource,uni_icesguid) VALUES ('%s','%s','%s','%s','%s'::uuid);", 
                 "gd", 
                 "Gear days for fyke/trap nets",
                 "gd", 
                 "MUNIT",
                 "bf0570b7-45f2-41c7-9a46-de912a2b9ad4")              
dbExecute(con_diaspara_admin,  query)


dbExecute(con_diaspara_admin, "UPDATE ref.tr_units_uni set uni_icesvalue='idx', 
          uni_icestablesource = 'MUNIT',
          uni_icesguid ='87a9cf7f-fff4-4712-b693-76eec1403254'::uuid
          where uni_code = 'index';")

# p06[grep('Ton',p06$Description),c("Description","Key")] 
# p06[grep('Without',tolower(p06$Description)),c("Description","Key")] 
# p06[grep('nanogram',tolower(p06$Description)),c("Description","Key")]
# p06[grep('index',tolower(p06$Description)),c("Description","Key")]
# p06[grep('hour',tolower(p06$Description)),c("Description","Key")]
# p06[grep('kilogram',tolower(p06$Description)),c("Description","Key")]
# p06[grep('nanogram',tolower(p06$Description)),c("Description","Key")]
# p06[grep('haul',tolower(p06$Description)),c("Description","Key")]

dbExecute(con_diaspara_admin, "COMMENT ON TABLE ref.tr_units_uni IS 
'Table of units, values from tables MUNIT and p06 have corresponding ICES code.'")
dbExecute(con_diaspara_admin, "COMMENT ON COLUMN ref.tr_units_uni.uni_code IS 
'Unit code, lowercase, nr number, otherwise standard units.'")
dbExecute(con_diaspara_admin, "COMMENT ON COLUMN ref.tr_units_uni.uni_description
 IS 'Unit code, lowercase, nr number, otherwise standard units.'")
dbExecute(con_diaspara_admin, "COMMENT ON COLUMN ref.tr_units_uni.uni_icesvalue IS 
'ICES code standard from the British Oceanographic Data Centre (p06) or MUNIT 
table.';") 
dbExecute(con_diaspara_admin, 
"COMMENT ON COLUMN ref.tr_units_uni.uni_icestablesource IS 
'Table source in ICES.';") 
dbExecute(con_diaspara_admin, 
"COMMENT ON COLUMN ref.tr_units_uni.uni_icesguid IS 
'GUID, type https://vocab.ices.dk/?codetypeguid=<guidcode> to get access to the 
vocab in ICES.';") 
dbExecute(con_diaspara_admin, "GRANT ALL ON TABLE ref.tr_units_uni 
          to diaspara_admin;")
dbExecute(con_diaspara_admin, "GRANT SELECT ON TABLE ref.tr_units_uni 
          to diaspara_read;")
Table 5: tr_units_uni table, check missing values currently not found in ICES Vocab
uni_code uni_description uni_icesvalue uni_icesguid uni_icestablesource
kg/d kilogramme per day NA NA NA
kg/boat/d kilogramme per boat per day NA NA NA
nr haul number of haul NA NA NA
nr electrofishing number of electrofishing campain in the year to collect the recruitment index NA NA NA
nr/haul number per haul NA NA NA
kg/ha weight in kilogrammes per surface in hectare NA NA NA
nr net.night number of net and night NA NA NA
nr fyke.day number of fyke and day NA NA NA
nr site number of site NA NA NA
nr/net/day number per net and day NA NA NA
kg weight in kilogrammes KGXX c1361a50-86e2-412f-b41b-5f1a006fccb1 p06
t weight in tonnes MTON 4fc26258-9a01-48f9-8b17-3e20f7a38faa p06
nr number UCNT 24eb2d51-8ee3-4e2e-a054-54d18db2d161 p06
g gram UGRM f0f3c481-168b-4426-b63f-92614d325782 p06
nr/m2 number per square meter UPMS d482b028-598d-4266-a9df-81f565297734 p06
nr/m3 number per cubic meter UPMM a3314231-4d85-47c8-9615-20f7283f0389 p06
nr year number of years UYRS b5da453a-51f3-46bb-bff2-0ae5a7a0db42 p06
mm milimeter UXMM 85d197e0-324c-4343-8314-2c934eca5315 p06
ha Surface HCTR 4d1a5474-67a8-46fe-98f9-82c405e025de p06
nr day number of days UTAA 5571062f-f40f-49d9-8b13-8cdd8f9ed6d1 p06
nr/h number per hour NOPH f9095fc1-bfee-40df-b289-e2850000dd26 p06
ng/g nanogram per gram NGPG 5ffd54a7-bc8d-4d00-9e60-e1554d57bd89 p06
percent percentage UPCT 355bd386-001b-40e8-bb7e-8515b7b737f4 p06
wo Not applicable (without unit) XXXX 896e5f8e-f467-49b5-97f3-f6df093a5293 p06
year-1 Per year XXPY a69c5e6b-789d-411c-86b3-70c3b89e8884 p06
s Seconds UTBB 9bc370c3-ff97-4dde-9e5c-3eba6074d224 p06
gd Gear days for fyke/trap nets gd bf0570b7-45f2-41c7-9a46-de912a2b9ad4 MUNIT
index calculated value following a specified protocol idx 87a9cf7f-fff4-4712-b693-76eec1403254 MUNIT

Some of the values are missing from ICES vocab (Table Table 5).

QUESTION ICES: missing values for units, what do we do ?

What do we do with units without correspondance? These come from FAO (if I remember well). Do we try to search for those in the wgeel database, and then remove if not existing or try to change existing values ?

  • Kg/day there is a kg/hour do we need to change to that type and convert existing series ?

  • Nr haul There is a definition of haul in the ICES vocab but it seems very related to sampling box, basket. And it’s not the number of haul.

  • Before working any further I would like your opinion there.

Parameters

Parameters are a simple way to reduce the complexity of data. It will correspond to all nimble variables, reduced to their lower level (e.g. 3 dimensional arrays with dimensions [area, year, stage] will be translated as many lines with the corresponding values in columns area, year, and stage), and the identifyer of the variable will be used for all the lines necessary to store this dataset. In practise, parameters also correspond to input data, and output data in the model. The parameters will be described by their metadata as illustrated in Figure 3

Figure 3: Mind map of the metadata structure

We can have a look at the metadata in the analysis done on the WGNAS database WGNAS description.

There is a problem in the “order or the dimensions which need to be aligned. For instance a column can hold year, or age. This is not good. The description could be used within a type array. SQL server does not work with array so it’s not a good idea to use those.

Checking stock codes using icesASD and icesSD packages
# install.packages('icesASD', repos = c('https://ices-tools-prod.r-universe.dev', 'https://cloud.r-project.org'))
#install.packages("icesSD", repos = c("https://ices-tools-prod.r-universe.dev", "https://cloud.r-project.org"))

library('icesASD')
library('icesSD')
# this does not give the 
advice <- getAdviceViewRecord()
advice[grepl('ele',advice$stockCode),
       c('adviceDOI', 'stockCode','assessmentYear')] %>% kable
sd <- mapply(getSD, year= 2020:2024, SIMPLIFY=FALSE)
sd <- do.call(rbind,sd)
ww <- grepl('ele',sd$StockKeyLabel) | grepl('Salmo',sd$SpeciesScientificName)
sd[ww,] %>% kable()
Table 6: Access to the advice using icesASD
adviceDOI stockCode assessmentYear
16 https://doi.org/10.17895/ices.advice.4825 ele.2737.nea 2019
799 https://doi.org/10.17895/ices.advice.19772374.v1 ele.2737.nea 2022
866 https://doi.org/10.17895/ices.pub.3440 ele.2737.nea 2017
975 https://doi.org/10.17895/ices.advice.7752 ele.2737.nea 2021
1014 https://doi.org/10.17895/ices.advice.5898 ele.2737.nea 2020
1048 https://doi.org/10.17895/ices.pub.4601 ele.2737.nea 2018
1312 https://doi.org/10.17895/ices.advice.21907860.v2 ele.2737.nea 2023
StockDatabaseID StockKey StockKeyLabel StockKeyDescription PreviousStockKey PreviousStockKeyLabel ActiveYear SpeciesScientificName SpeciesCommonName EcoRegion ExpertGroup ExpertGroupDescription AdviceDraftingGroup AdviceDraftingGroupDescription DataCategory YearOfLastAssessment AssessmentFrequency YearOfNextAssessment AssessmentType AdviceReleaseDate AdviceCategory AdviceType UseOfDiscardsInAdvice PABufferApplied TrophicGuild FisheriesGuild SizeGuild Published GeneratedOn SectionNumber AssessmentKey ModifiedDate ModelType ModelName
149 2600 169241 sal.27.22-31 Salmon (Salmo salar) in subdivisions 22-31 (Baltic Sea, excluding the Gulf of Finland) 136678 sal-2431 2020 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2019 1 2020 Analytical model, Bayesian state-space model for a majority of rivers in AUs 1–4 NA MSY Catches Assessment NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:07.17+01:00 8.3.15 13726 2019-05-29T11:25:06.9+01:00 O Unknown
186 2590 169095 ele.2737.nea European eel (Anguilla anguilla) throughout its natural range 136527 ele-nea 2020 Anguilla anguilla Eel Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Baltic Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGEEL Joint EIFAAC/ICES/GFCM Working Group on Eels ADGEEL Eel Advice Drafting GRoup 3.14 2020 1 2021 Trends-based assessment NA PA No directed fisheries Not used No demersal benthivore Demersal medium demersal TRUE 2025-01-19T21:07:07.17+01:00 9.3.13 14025 2020-11-12T15:09:35.93+01:00 NA NA
187 2601 169242 sal.27.32 Salmon (Salmo salar) in Subdivision 32 (Gulf of Finland) 136679 sal-32 2020 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 3 2020 1 2021 Qualitative assessment based on monitored parr densities and expert judgement. NA PA Catches Topped up No pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:07.17+01:00 8.3.16 13453 2020-11-12T12:12:48.513+01:00 O Unknown
236 2512 169291 trs.27.22-32 Sea trout (Salmo trutta) in subdivisions 22-32 (Baltic Sea) 136729 trt-bal 2020 Salmo trutta Sea trout Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout NA NA 4 2019 2 2021 Evaluation of the relative status of stocks by comparing the observed parr densities to model-predicted maximal parr densities. NA PA Reduction Not used No demersal piscivore Pelagic large pelagic TRUE 2025-01-19T21:07:07.17+01:00 8.3.18 NA 2019-05-29T11:34:00.447+01:00 NA NA
259 2652 199793 sal.neac.all Salmon (Salmo salar) in Northeast Atlantic and Arctic Ocean NA NA 2020 Salmo salar Salmon Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2018 3 2021 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in data and process error (results presented in a risk analysis framework) NA MSY/PA Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:07.17+01:00 10.3.3 NA 2020-11-12T13:18:52.573+01:00 O Unknown
260 2650 199794 sal.nac.all Salmon (Salmo salar) from North America NA NA 2020 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2019 2 2021 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY/PA Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:07.17+01:00 10.3.1 NA 2021-01-11T10:35:02.487+01:00 O Unknown
261 2651 199795 sal.wgc.all Salmon (Salmo salar) in Subarea 14 and NAFO division 1 (east and west of Greenland) NA NA 2020 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2019 2 2021 Analytical model, run reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY/PA Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:07.17+01:00 10.3.2 NA 2020-12-09T11:49:52.74+01:00 O Unknown
412 2819 169241 sal.27.22-31 Salmon (Salmo salar) in subdivisions 22-31 (Baltic Sea, excluding the Gulf of Finland) 136678 sal-2431 2021 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 1 2022 Analytical model, Bayesian state-space model for a majority of rivers in AUs 1–4 NA MSY Catches Assessment NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:08.173+01:00 8.3.15 NA 2021-10-29T11:41:04.66+01:00 O Unknown
448 2856 169095 ele.2737.nea European eel (Anguilla anguilla) throughout its natural range 136527 ele-nea 2021 Anguilla anguilla Eel Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Baltic Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGEEL Joint EIFAAC/ICES/GFCM Working Group on Eels ADGEEL Eel Advice Drafting GRoup 3.14 2021 1 2022 Trends-based assessment NA PA No directed fisheries Not used No demersal benthivore Demersal medium demersal TRUE 2025-01-19T21:07:08.173+01:00 9.3.13 16876 2021-11-11T11:41:40.003+01:00 NA NA
449 2857 169242 sal.27.32 Salmon (Salmo salar) in Subdivision 32 (Gulf of Finland) 136679 sal-32 2021 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 3 2021 1 2022 Qualitative assessment based on monitored parr densities and expert judgement. NA PA Catches Topped up No pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:08.173+01:00 8.3.16 NA 2021-12-10T11:13:59.86+01:00 O Unknown
498 2906 169291 trs.27.22-32 Sea trout (Salmo trutta) in subdivisions 22-32 (Baltic Sea) 136729 trt-bal 2021 Salmo trutta Sea trout Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout NA NA 4 2021 2 2023 Evaluation of the relative status of stocks by comparing the observed parr densities to model-predicted maximal parr densities. NA PA Reduction Not used No demersal piscivore Pelagic large pelagic TRUE 2025-01-19T21:07:08.173+01:00 8.3.18 NA 2021-12-10T11:12:39.54+01:00 NA NA
520 2929 199793 sal.neac.all Salmon (Salmo salar) in Northeast Atlantic and Arctic Ocean NA NA 2021 Salmo salar Salmon Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 1 2022 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in data and process error (results presented in a risk analysis framework) NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:08.173+01:00 10.3.3 NA 2021-10-29T11:46:05.567+01:00 O Unknown
521 2930 199794 sal.nac.all Salmon (Salmo salar) from North America NA NA 2021 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 1 2022 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY/PA Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:08.173+01:00 10.3.1 NA 2021-10-29T11:44:11.297+01:00 O Unknown
522 2931 199795 sal.wgc.all Salmon (Salmo salar) in Subarea 14 and NAFO division 1 (east and west of Greenland) NA NA 2021 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:08.173+01:00 10.3.2 NA 2021-10-29T11:47:18.467+01:00 O Unknown
677 3058 169241 sal.27.22-31 Salmon (Salmo salar) in subdivisions 22-31 (Baltic Sea, excluding the Gulf of Finland) 136678 sal-2431 2022 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 1 2022 Analytical model, Bayesian state-space model for a majority of rivers in AUs 1–4 NA MSY Catches Assessment NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:09.023+01:00 8.3.15 NA 2021-10-29T11:41:04.66+01:00 O Unknown
713 3100 169095 ele.2737.nea European eel (Anguilla anguilla) throughout its natural range 136527 ele-nea 2022 Anguilla anguilla Eel Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Baltic Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGEEL Joint EIFAAC/ICES/GFCM Working Group on Eels ADGEEL Eel Advice Drafting GRoup 3.14 2022 1 2023 Trends-based assessment NA PA No directed fisheries Not used No demersal benthivore Demersal medium demersal TRUE 2025-01-19T21:07:09.023+01:00 9.3.13 17615 2023-01-03T10:52:52.937+01:00 NA NA
714 3101 169242 sal.27.32 Salmon (Salmo salar) in Subdivision 32 (Gulf of Finland) 136679 sal-32 2022 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 3 2021 1 2022 Qualitative assessment based on monitored parr densities and expert judgement. NA PA Catches Topped up No pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:09.023+01:00 8.3.16 NA 2021-12-10T11:13:59.86+01:00 O Unknown
763 3144 169291 trs.27.22-32 Sea trout (Salmo trutta) in subdivisions 22-32 (Baltic Sea) 136729 trt-bal 2022 Salmo trutta Sea trout Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout NA NA 4 2021 2 2023 Evaluation of the relative status of stocks by comparing the observed parr densities to model-predicted maximal parr densities. NA PA Reduction Not used No demersal piscivore Pelagic large pelagic TRUE 2025-01-19T21:07:09.023+01:00 8.3.18 NA 2023-01-05T10:54:51.217+01:00 NA NA
785 3167 199793 sal.neac.all Salmon (Salmo salar) in Northeast Atlantic and Arctic Ocean NA NA 2022 Salmo salar Salmon Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 1 2022 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in data and process error (results presented in a risk analysis framework) NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:09.023+01:00 10.3.3 NA 2021-10-29T11:46:05.567+01:00 O Unknown
786 3168 199794 sal.nac.all Salmon (Salmo salar) from North America NA NA 2022 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 1 2022 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY/PA Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:09.023+01:00 10.3.1 NA 2021-10-29T11:44:11.297+01:00 O Unknown
787 3169 199795 sal.wgc.all Salmon (Salmo salar) in Subarea 14 and NAFO division 1 (east and west of Greenland) NA NA 2022 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:09.023+01:00 10.3.2 NA 2021-10-29T11:47:18.467+01:00 O Unknown
944 3279 169241 sal.27.22-31 Salmon (Salmo salar) in subdivisions 22-31 (Baltic Sea, excluding the Gulf of Finland) 136678 sal-2431 2023 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2023 1 2024 Analytical model, Bayesian state-space model for a majority of rivers in AUs 1–4 NA MSY Catches Assessment NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.037+01:00 8.3.15 NA 2023-05-31T13:58:57.367+01:00 B Unknown
980 3320 169095 ele.2737.nea European eel (Anguilla anguilla) throughout its natural range 136527 ele-nea 2023 Anguilla anguilla Eel Arctic Ocean, Bay of Biscay and the Iberian Coast, Celtic Seas, Greater North Sea, Oceanic Northeast Atlantic WGEEL Joint EIFAAC/ICES/GFCM Working Group on Eels ADGEEL Eel Advice Drafting GRoup 3.14 2022 1 2023 Trends-based assessment NA PA No directed fisheries Not used No demersal benthivore Demersal medium demersal TRUE 2025-01-19T21:07:10.037+01:00 9.3.13 18459 2023-11-14T09:05:55.627+01:00 NA NA
981 3321 169242 sal.27.32 Salmon (Salmo salar) in Subdivision 32 (Gulf of Finland) 136679 sal-32 2023 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 3 2023 1 2024 Qualitative assessment based on monitored parr densities and expert judgement. NA PA Catches Topped up No pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.037+01:00 8.3.16 NA 2023-11-14T09:59:06.097+01:00 O Unknown
1029 3364 169291 trs.27.22-32 Sea trout (Salmo trutta) in subdivisions 22-32 (Baltic Sea) 136729 trt-bal 2023 Salmo trutta Sea trout Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout NA NA 4 2023 2 2025 Evaluation of the relative status of stocks by comparing the observed parr densities to model-predicted maximal parr densities. NA PA Reduction Not used No demersal piscivore Pelagic large pelagic TRUE 2025-01-19T21:07:10.037+01:00 8.3.18 NA 2023-05-31T14:05:23.573+01:00 NA NA
1051 3431 199793 sal.neac.all Salmon (Salmo salar) in Northeast Atlantic and Arctic Ocean NA NA 2023 Salmo salar Salmon Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in data and process error (results presented in a risk analysis framework) NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.037+01:00 10.3.3 NA 2023-10-10T09:13:51.963+01:00 O Unknown
1052 3432 199794 sal.nac.all Salmon (Salmo salar) from North America NA NA 2023 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.037+01:00 10.3.1 NA 2023-10-10T09:09:42.107+01:00 O Unknown
1053 3433 199795 sal.wgc.all Salmon (Salmo salar) in Subarea 14 and NAFO division 1 (east and west of Greenland) NA NA 2023 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.037+01:00 10.3.2 NA 2021-10-29T11:47:18.467+01:00 O Unknown
1209 3561 169241 sal.27.22-31 Salmon (Salmo salar) in subdivisions 22–31 (Baltic Sea, excluding the Gulf of Finland) 136678 sal-2431 2024 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2023 1 2024 Analytical model, Bayesian state-space model for a majority of rivers in AUs 1–4 NA MSY Catches Assessment NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.76+01:00 8.3.15 NA 2024-01-11T09:30:20.893+01:00 B Unknown
1245 3601 169095 ele.2737.nea European eel (Anguilla anguilla) throughout its natural range 136527 ele-nea 2024 Anguilla anguilla Eel Arctic Ocean, Bay of Biscay and the Iberian Coast, Celtic Seas, Greater North Sea, Oceanic Northeast Atlantic WGEEL Joint EIFAAC/ICES/GFCM Working Group on Eels ADGEEL Eel Advice Drafting GRoup 3.14 2022 1 2023 Trends-based assessment NA PA No directed fisheries Not used No demersal benthivore Demersal medium demersal TRUE 2025-01-19T21:07:10.76+01:00 9.3.13 NA 2024-09-25T14:21:32.487+01:00 NA NA
1246 3602 169242 sal.27.32 Salmon (Salmo salar) in Subdivision 32 (Gulf of Finland) 136679 sal-32 2024 Salmo salar Salmon Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout RG/ADGSalmon Salmon Review and Advice Drafting Group 3 2023 1 2024 Qualitative assessment based on monitored parr densities and expert judgement. NA PA Catches Topped up No pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.76+01:00 8.3.16 19019 2024-01-11T10:26:17.923+01:00 O Unknown
1294 3645 169291 trs.27.22-32 Sea trout (Salmo trutta) in subdivisions 22–32 (Baltic Sea) 136729 trt-bal 2024 Salmo trutta Sea trout Baltic Sea WGBAST Assessment Working Group on Baltic Salmon and Trout NA NA 4 2023 2 2025 Evaluation of the relative status of stocks by comparing the observed parr densities to model-predicted maximal parr densities. NA PA Reduction Not used No demersal piscivore Pelagic large pelagic TRUE 2025-01-19T21:07:10.76+01:00 8.3.18 NA 2024-01-11T09:08:41.113+01:00 NA NA
1317 3709 199793 sal.neac.all Salmon (Salmo salar) in Northeast Atlantic and Arctic Ocean NA NA 2024 Salmo salar Salmon Arctic Ocean, Azores, Bay of Biscay and the Iberian Coast, Barents Sea, Celtic Seas, Faroes, Greenland Sea, Icelandic Waters, Greater North Sea, Norwegian Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in data and process error (results presented in a risk analysis framework) NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.76+01:00 10.3.3 NA 2023-10-10T09:13:51.963+01:00 O Unknown
1318 3710 199794 sal.nac.all Salmon (Salmo salar) from North America NA NA 2024 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run-reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.76+01:00 10.3.1 NA 2023-10-10T09:09:42.107+01:00 O Unknown
1319 3711 199795 sal.wgc.all Salmon (Salmo salar) in Subarea 14 and NAFO division 1 (east and west of Greenland) NA NA 2024 Salmo salar Salmon Greenland Sea, Oceanic Northeast Atlantic WGNAS Working Group on North Atlantic Salmon RG/ADGSalmon Salmon Review and Advice Drafting Group 1 2021 3 2024 Analytical model, run reconstruction models and Bayesian forecasts, taking into account uncertainties in the data NA MSY Catches Not used NA pelagic piscivore Pelagic large benthopelagic TRUE 2025-01-19T21:07:10.76+01:00 10.3.2 NA 2021-10-29T11:47:18.467+01:00 O Unknown

The code for creating metadata is listed below

SQL code to create tables

-- the code is here : SQL/tr_metadata_met.sql
-- we first create all referential tables then the metadata itself

DROP TABLE IF EXISTS ref.tr_objecttype_oty CASCADE;
CREATE TABLE ref.tr_objecttype_oty (
oty_code TEXT PRIMARY KEY,
oty_description TEXT
);

INSERT INTO ref.tr_objecttype_oty VALUES ('Single_value', 'Single value');
INSERT INTO ref.tr_objecttype_oty VALUES ('Vector', 'One dimension vector');
INSERT INTO ref.tr_objecttype_oty VALUES ('Matrix', 'Two dimensions matrix');
INSERT INTO ref.tr_objecttype_oty VALUES ('Array', 'Three dimensions array');

COMMENT ON TABLE ref.tr_objecttype_oty IS 
'Table indicating the dimensions of the object stored in the model, 
single value, vector, matrix, array';

COMMENT ON COLUMN ref.tr_objecttype_oty.oty_code IS 
'code of the object type, single_value, vector, ...';

COMMENT ON COLUMN ref.tr_objecttype_oty.oty_code IS 'description of the object type';
GRANT ALL ON ref.tr_objecttype_oty TO diaspara_admin;
GRANT SELECT ON ref.tr_objecttype_oty TO diaspara_read;
--nimble

DROP TABLE IF EXISTS ref.tr_nimble_nim CASCADE;
CREATE TABLE ref.tr_nimble_nim (
nim_code TEXT PRIMARY KEY,
nim_description TEXT
);

COMMENT ON TABLE ref.tr_nimble_nim IS 
'Indicate the type of data, parameter constant, parameter estimate, output, other ...';
-- Note this is a mix of nimble and status, which mean the same....

INSERT INTO ref.tr_nimble_nim VALUES ('Data', 'Data entry to the model');
INSERT INTO ref.tr_nimble_nim 
VALUES ('Parameter constant', 'Parameter input to the model');
INSERT INTO ref.tr_nimble_nim 
VALUES ('Parameter estimate', 'Parameter input to the model');
INSERT INTO ref.tr_nimble_nim 
VALUES ('Output', 'Output from the model, derived quantity');
-- Do we want another type here ?
--INSERT INTO ref.tr_nimble_nim VALUES ('observation', 'Observation not used in the model');
INSERT INTO ref.tr_nimble_nim 
VALUES ('Other', 'Applies currently to conservation limits');
GRANT ALL ON ref.tr_nimble_nim TO diaspara_admin;
GRANT SELECT ON ref.tr_nimble_nim TO diaspara_read;

-- It seems to me that metadata should contain information about historical 
-- variables, so I'm moving this from the main table and adding to metadata
-- some variables might get deprecated in time. 
-- Unless they get a new version this might not change
-- I have removed reference to stockkey as there are several stock keys
-- for the work of WGNAS
DROP TABLE IF EXISTS ref.tr_version_ver CASCADE;
CREATE TABLE ref.tr_version_ver(
ver_code TEXT PRIMARY KEY,
ver_year INTEGER NOT NULL,
ver_spe_code CHARACTER VARYING(3),
--ver_stockkey INTEGER NOT NULL, 
--ver_stockkeylabel TEXT NOT NULL,
---ver_stockadvicedoi TEXT NOT NULL,
ver_datacalldoi TEXT NULL,
ver_version INTEGER NOT NULL,
ver_description TEXT,
CONSTRAINT fk_ver_spe_code FOREIGN KEY (ver_spe_code) 
REFERENCES ref.tr_species_spe(spe_code)
ON UPDATE CASCADE ON DELETE CASCADE
);
COMMENT ON TABLE ref.tr_version_ver
IS 'Table of data or variable version, essentially one datacall or advice.';
COMMENT ON COLUMN ref.tr_version_ver.ver_version 
IS 'Version code, stockkey-year-version.';
COMMENT ON COLUMN ref.tr_version_ver.ver_year 
IS 'Year of assessement.';
COMMENT ON COLUMN ref.tr_version_ver.ver_spe_code 
IS 'Species code e.g. ''ele'' references tr_species_spe.';
--COMMENT ON COLUMN ref.tr_version_ver.ver_stockkey 
--IS 'Stockkey (integer) from the stock database.';
--COMMENT ON COLUMN ref.tr_version_ver.ver_stockkeylabel 
--IS 'Ver_stockkeylabel e.g. ele.2737.nea.';
--COMMENT ON COLUMN ref.tr_version_ver.ver_stockadvicedoi 
--IS 'Advice DOI corresponding to column adviceDOI 
--when using icesASD::getAdviceViewRecord().';
COMMENT ON COLUMN ref.tr_version_ver.ver_datacalldoi 
IS 'Data call DOI, find a way to retreive that information 
and update this comment';
COMMENT ON COLUMN ref.tr_version_ver.ver_version 
IS 'Version code in original database, eg 2,4 for wgnas, dc_2020 for wgeel.';
COMMENT ON COLUMN ref.tr_version_ver.ver_description 
IS 'Description of the data call / version.';
GRANT ALL ON ref.tr_version_ver TO diaspara_admin;
GRANT SELECT ON ref.tr_version_ver TO diaspara_read;
-- metric 

DROP TABLE IF EXISTS  ref.tr_metric_mtr CASCADE;
CREATE TABLE ref.tr_metric_mtr(
mtr_code TEXT PRIMARY KEY,
mtr_description TEXT
);


INSERT INTO ref.tr_metric_mtr VALUES
('Estimate' , 'Estimate');
INSERT INTO ref.tr_metric_mtr VALUES
('Index', 'Index');
INSERT INTO ref.tr_metric_mtr VALUES
('Bound', 'Either min or max');
INSERT INTO ref.tr_metric_mtr VALUES
('Hyperparameter', 'Hyperparameter (prior)');
INSERT INTO ref.tr_metric_mtr VALUES
('SD', 'Standard deviation');
INSERT INTO ref.tr_metric_mtr VALUES
('CV', 'Coefficient of variation');
INSERT INTO ref.tr_metric_mtr VALUES
('Precision', 'Inverse of variance');
INSERT INTO ref.tr_metric_mtr VALUES
('Mean', 'Mean');
INSERT INTO ref.tr_metric_mtr VALUES 
('Min','Minimum');
INSERT INTO ref.tr_metric_mtr VALUES 
('Max','Maximum');

GRANT ALL ON ref.tr_metric_mtr TO diaspara_admin;
GRANT SELECT ON ref.tr_metric_mtr TO diaspara_read;
COMMENT ON TABLE ref.tr_metric_mtr IS 
'Table metric describe the possible values of parameters, Index, Bound ...';

-- tr_category_cat

DROP TABLE IF EXISTS ref.tr_category_cat CASCADE;
CREATE TABLE ref.tr_category_cat (
cat_code TEXT PRIMARY KEY,
cat_description TEXT
);

INSERT INTO ref.tr_category_cat VALUES 
('Catch', 'Catch, including recreational and commercial catch.');
INSERT INTO ref.tr_category_cat VALUES (
'Effort', 'Parameter measuring fishing effort.');
INSERT INTO ref.tr_category_cat VALUES (
'Biomass', 'Biomass of fish either in number or weight.');
INSERT INTO ref.tr_category_cat VALUES (
'Mortality', 'Mortality either expressed in year-1 (instantaneous rate) 
as F in exp(-FY) but can also be harvest rate.');
INSERT INTO ref.tr_category_cat VALUES (
'Release', 'Release or restocking.');
INSERT INTO ref.tr_category_cat VALUES (
'Density', 'Fish density.');
INSERT INTO ref.tr_category_cat VALUES (
'Count', 'Count or abundance or number of fish.');
INSERT INTO ref.tr_category_cat VALUES (
'Conservation limit', 'Limit of conservation in Number or Number of eggs.');
INSERT INTO ref.tr_category_cat VALUES (
'Life trait', 'Life trait parameterized in model, e.g. growth parameter, 
fecundity rate ...');

COMMENT ON TABLE ref.tr_category_cat IS 
'Broad category of data or parameter, catch, effort, biomass, mortality, count ...,
 more details in the table ref.tr_parameter_parm e.g. commercial catch,
recreational catch are found in the parameter value and definition and unit, 
this list is intended to be short.';

GRANT ALL ON ref.tr_category_cat TO diaspara_admin;
GRANT SELECT ON ref.tr_category_cat TO diaspara_read;

DROP TABLE IF EXISTS ref.tr_outcome_oco CASCADE;
CREATE TABLE ref.tr_outcome_oco (
oco_code TEXT PRIMARY KEY,
oco_description TEXT
);

COMMENT ON TABLE ref.tr_outcome_oco IS 
'Table of fish outcome. When dealing with fish, e.g. in landings,what is the 
outcome of the fish, e.g. Released (alive), Seal damage, 
Removed (from the environment)';
INSERT INTO ref.tr_outcome_oco VALUES 
('Removed', 'Removed from the environment, e.g. caught and kept');
INSERT INTO ref.tr_outcome_oco VALUES (
'Seal damaged', 'Seal damage');
INSERT INTO ref.tr_outcome_oco VALUES (
'Discarded', 'Discards');
INSERT INTO ref.tr_outcome_oco VALUES (
'Released', 'Released alive');


GRANT ALL ON ref.tr_outcome_oco TO diaspara_admin;
GRANT SELECT ON ref.tr_outcome_oco TO diaspara_read;





DROP TABLE IF EXISTS ref.tr_metadata_met CASCADE;
CREATE TABLE ref.tr_metadata_met (
  met_var TEXT NOT NULL,
  met_spe_code character varying(3) NOT  NULL,
  met_wkg_code TEXT NOT NULL,
  met_ver_code TEXT NULL,
  met_oty_code TEXT NOT NULL,
  met_nim_code TEXT NOT NULL,
  met_dim integer ARRAY,
  met_dimname TEXT ARRAY,
  met_modelstage TEXT NULL, 
  met_type TEXT NULL,
  met_location TEXT NULL,
  met_fishery TEXT NULL,
  met_mtr_code TEXT NULL,
  met_oco_code TEXT NULL,
  met_uni_code TEXT NULL,
  met_cat_code TEXT NULL,
  met_definition TEXT NULL, 
  met_deprecated BOOLEAN DEFAULT FALSE,
  CONSTRAINT t_metadata_met_pkey PRIMARY KEY(met_var, met_spe_code),
  CONSTRAINT fk_met_spe_code FOREIGN KEY (met_spe_code)
  REFERENCES ref.tr_species_spe(spe_code) 
  ON DELETE CASCADE
  ON UPDATE CASCADE,
    CONSTRAINT fk_met_wkg_code FOREIGN KEY (met_wkg_code)
  REFERENCES ref.tr_icworkinggroup_wkg(wkg_code) 
  ON DELETE CASCADE
  ON UPDATE CASCADE,
  CONSTRAINT fk_met_ver_code FOREIGN KEY (met_ver_code)
  REFERENCES ref.tr_version_ver(ver_code) 
  ON DELETE CASCADE
  ON UPDATE CASCADE,
  CONSTRAINT fk_met_oty_code FOREIGN KEY (met_oty_code) 
  REFERENCES ref.tr_objecttype_oty (oty_code) ON DELETE CASCADE
  ON UPDATE CASCADE,
  CONSTRAINT fk_met_nim_code FOREIGN KEY (met_nim_code) 
  REFERENCES ref.tr_nimble_nim (nim_code) ON DELETE CASCADE
  ON UPDATE CASCADE,  
  CONSTRAINT fk_met_mtr_code FOREIGN KEY (met_mtr_code)
  REFERENCES ref.tr_metric_mtr(mtr_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE,
  CONSTRAINT fk_met_uni_code FOREIGN KEY (met_uni_code)
  REFERENCES ref.tr_units_uni(uni_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE,
  CONSTRAINT fk_met_cat_code FOREIGN KEY (met_cat_code)
  REFERENCES ref.tr_category_cat(cat_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE,
  CONSTRAINT fk_met_oco_code FOREIGN KEY (met_oco_code)
  REFERENCES ref.tr_outcome_oco(oco_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE
);
COMMENT ON TABLE ref.tr_metadata_met IS 
'Table (metadata) of each variable (parameter) in the database.';
COMMENT ON COLUMN ref.tr_metadata_met.met_var 
IS 'Variable code, primary key on both met_spe_code and met_var.';
COMMENT ON COLUMN ref.tr_metadata_met.met_spe_code 
IS 'Species, ANG, SAL, TRT ... primary key on both met_spe_code and met_var.';
COMMENT ON COLUMN ref.tr_metadata_met.met_ver_code 
IS 'Code on the version of the model, see table tr_version_ver.';
COMMENT ON COLUMN ref.tr_metadata_met.met_oty_code 
IS 'Object type, single_value, vector, matrix see table tr_objecttype_oty.';
COMMENT ON COLUMN ref.tr_metadata_met.met_nim_code 
IS 'Nimble type, one of data, constant, output, other.';
COMMENT ON COLUMN ref.tr_metadata_met.met_dim 
IS 'Dimension of the Nimble variable, use {10, 100, 100} 
to insert the description of an array(10,100,100).';
COMMENT ON COLUMN ref.tr_metadata_met.met_dimname 
IS 'Dimension of the variable in Nimble, use {''year'', ''stage'', ''area''}.';
COMMENT ON COLUMN ref.tr_metadata_met.met_modelstage 
IS 'Currently one of fit, other, First year.';
COMMENT ON COLUMN ref.tr_metadata_met.met_type 
IS 'Type of data in the variable, homewatercatches, InitialISation first year,
abundance ....';
COMMENT ON COLUMN ref.tr_metadata_met.met_location 
IS 'Describe process at sea, e.g. Btw. FAR - GLD fisheries, or Aft. Gld fISheries.';
COMMENT ON COLUMN ref.tr_metadata_met.met_fishery 
IS 'Description of the fishery.';
COMMENT ON COLUMN ref.tr_metadata_met.met_oco_code 
IS 'Outcome of the fish, e.g. Released (alive), Seal damage,
Removed (from the environment), references table tr_outcome_oco.';
COMMENT ON COLUMN ref.tr_metadata_met.met_uni_code 
IS 'Unit, references table tr_unit_uni.';
COMMENT ON COLUMN ref.tr_metadata_met.met_cat_code 
IS 'Broad category of data or parameter, 
catch, effort, biomass, mortality, count ...references table tr_category_cat.';
COMMENT ON COLUMN ref.tr_metadata_met.met_mtr_code 
IS 'Code of the metric, references tr_metric_mtr, Estimate, Bound, SD, CV ....';
COMMENT ON COLUMN ref.tr_metadata_met.met_definition 
IS 'Definition of the metric.';
COMMENT ON COLUMN ref.tr_metadata_met.met_deprecated
IS'Is the variable still used ?';

GRANT ALL ON ref.tr_metadata_met TO diaspara_admin;
GRANT SELECT ON ref.tr_metadata_met TO diaspara_read;
DIASPARA

Not yet completely sure about this …. Environment (sea, transition …), age, life stage and complex are in the metadata. But they are also in the main table. To start with, we remove them to reduce complexity and avoid errors. The complex will be derived from the spatial structure still in construction

DIASPARA

As in the diagram, added a category (data type in figure Figure 3). The idea is to be able to get quickly all parameters related to a type, e.g. catch, mortality, biomass. Please check and also check definitions.

DIASPARA

WGBAST, WGNAS, WGEEL, WGTRUTTA will have to check definitions in tr_outcome. Note this is just a column in tr_metadata_met not in the main table.

Object type (tr_objectype_oty)

This table (Table 7) is used in metadata

Table 7: Object type
oty_code oty_description
Single_value Single value
Vector One dimension vector
Matrix Two dimensions matrix
Array Three dimensions array

Type of parm / data (tr_nimble_nim)

In the salmoglob db, this table (Table 8) corresponded to both tables status and nimble which most often contained the same information.

Table 8: Nimble
nim_code nim_description
Data Data entry to the model
Parameter constant Parameter input to the model
Parameter estimate Parameter input to the model
Output Output from the model, derived quantity
Other Applies currently to conservation limits

Version (tr_version_ver)

Currently in the salmoglob metadata there is no information about version. The version number is in the table itself. It seems to correspond to different versions of the same parameter. While currently this information is stored in the database and database_archive it seems to that metadata should also contain information about historical variables. For instance we create a new variable, so we know when it was introduced. So I’m moving this from the main table and adding to metadata Some variables might get deprecated over time. The year will be the year when the variable was introduced. The version (Table 9) contains both reference to the datacall (when data are loaded) and to the advice. The advice might still be null at the time the values will be entered into the database.

Code to insert values into the tr_version_ver table
#sd <-do.call(rbind,mapply(icesSD::getSD, year= 2020:2024, SIMPLIFY=FALSE))
#sd[grepl('Working Group on North Atlantic Salmon',sd$ExpertGroupDescription),]

tr_version_ver <- data.frame(
ver_code = paste0("SAL_",2020:2024),
ver_year = 2020:2024,
ver_spe_code = "SAL",
ver_datacalldoi=c(NA,NA,NA,NA,"https://doi.org/10.17895/ices.pub.25071005.v3"), 
# TODO FIND other DOI (mail sent to ICES)
ver_version=c(1,1,1,1,1), # TODO WGNAS check that there is just one version
ver_description=c(NA,NA,NA,NA,NA)) # TODO WGNAS provide model description

DBI::dbWriteTable(con_diaspara_admin, "temp_tr_version_ver", tr_version_ver, 
overwrite = TRUE)
dbExecute(con_diaspara_admin, "INSERT INTO ref.tr_version_ver SELECT * FROM temp_tr_version_ver;") # 5

Question to WNGAS / ICES

  • Check there is just one version per year
  • Provide descriptions of the version of the model
  • Questions sent to ICES to provide access to historical DOI
Table 9: Version
ver_code ver_year ver_spe_code ver_datacalldoi ver_version ver_description
SAL_2020 2020 SAL NA 1 NA
SAL_2021 2021 SAL NA 1 NA
SAL_2022 2022 SAL NA 1 NA
SAL_2023 2023 SAL NA 1 NA
SAL_2024 2024 SAL https://doi.org/10.17895/ices.pub.25071005.v3 1 NA

QUESTION ICES: What is the vocabulary for datacalls

I would like to access to this table : datacall (see link in ICES webpage). Currently we see the current year, this is nice, how do we access to historical data, is there a way to get it using a query ? We’ve found a link for advice or stocks but not data calls.

Metric (tr_metric_mtr)

Table 10: Metric, type of parm used in the model
mtr_code mtr_description
Estimate Estimate
Index Index
Bound Either min or max
Hyperparameter Hyperparameter (prior)
SD Standard deviation
CV Coefficient of variation
Precision Inverse of variance
Mean Mean
Min Minimum
Max Maximum
NOTE

This list is probably incomplete. But the metric can be NULL in case of a number of fish released, not of the above (Table 10) will apply.

Category (tr_category_cat)

categories Table 11 were in the salmoglob metadata, we have simplified to reduce the number of categories and be able to get for instance all parameters dealing with catch.

Table 11: category of parameters
cat_code cat_description
Catch Catch, including recreational and commercial catch.
Effort Parameter measuring fishing effort.
Biomass Biomass of fish either in number or weight.
Mortality Mortality either expressed in year-1 (instantaneous rate) as F in exp(-FY) but can also be harvest rate
Release Release or restocking.
Density Fish density.
Count Count or abundance or number of fish.
Conservation limit Limit of conservation in Number or Number of eggs.
Life trait Life trait parameterized in model, e.g. growth parameter, fecundity rate ...

Outcome (tr_outcome_oco)

A bit cumbersome this table, the idea is “what becomes of this fish”. Different types of landings. But it’s just in metatdata and we need need in WGBAST

Table 12: category of parameters
oco_code oco_description
Removed Removed from the environment, e.g. caught and kept
Seal damaged Seal damage
Discarded Discards
Released Released alive

Metadata (tr_metadata_met)

Table 13: metadata
met_var met_spe_code met_wkg_code met_ver_code met_oty_code met_nim_code met_dim met_dimname met_modelstage met_type met_location met_fishery met_mtr_code met_oco_code met_uni_code met_cat_code met_definition met_deprecated
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
:------- :------------ :------------ :------------ :------------ :------------ :------- :----------- :-------------- :-------- :------------ :----------- :------------ :------------ :------------ :------------ :-------------- :--------------

Area (tr_area_are)

Here I’m trying to build something consistent. I guess only the final result will tell but I have to start somewhere … A good idea to simplify the structure of the db is to get together marine and continental areas.

Continental areas

Code to create area
dbExecute(con_diaspara_admin,
"DROP TABLE IF EXISTS ref.tr_level_lev CASCADE;")

dbExecute(con_diaspara_admin,
"CREATE TABLE ref.tr_level_lev(
   lev_code TEXT PRIMARY KEY,
   lev_description TEXT  
);")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Stock',
  'This is the highest geographic level for assessement, stock level.'  
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Complex',
  'Corresponds to large sublevels at which the stock is assessed, e.g.
  NAC NEC for WGNAST, Gulf of Bothnia for WGBAST, Mediterranean for WGEEL.'  
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Country',
  'Corresponds to one or more units, but in almost all stocks
  this level is relevant to split data.'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Assessment_unit',
  'Corresponds to an assessment unit in the Baltic sea, and area for  
  WGNAS, and EMU for WGEEL.'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Regional',
  'Corresponds to subunits of stock assessment units or 
  basins grouping several river. Although it is not used yet for
  some models, regional genetic difference or difference in stock
  dynamic support collecting a regional level.'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'River',
  'One river is a unit corresponding practically almost always to a watershed.'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'river_section',
  'Section of river, only a part of a basin, for instance to separate between
  wild and mixed river category in the Baltic.'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Major',
  'Major fishing areas from ICES.'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Subarea',
  'Subarea from ICES, FAO and NAFO'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Division',
  'Division from ICES, GFCM and NAFO'
  );")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_level_lev VALUES( 
  'Subdivision',
  'Subdivision level from ICES, GFCM and NAFO'
  );")

dbExecute(con_diaspara_admin, "COMMENT ON TABLE ref.tr_level_lev 
IS 'Table of geographic levels stock, complex, country, region, basin, river,
the specific order depend according to working groups.';")

dbExecute(con_diaspara_admin, "GRANT ALL ON ref.tr_level_lev 
          TO diaspara_admin;")
dbExecute(con_diaspara_admin, "GRANT SELECT ON ref.tr_level_lev 
          TO diaspara_read;")


dbExecute(con_diaspara_admin,
"DROP TABLE IF EXISTS ref.tr_area_are CASCADE;")
dbExecute(con_diaspara_admin,
"CREATE TABLE ref.tr_area_are (
   are_id INTEGER PRIMARY KEY,
   are_are_id INTEGER,
   are_code  TEXT,
   are_lev_code TEXT,
   are_wkg_code TEXT,
   are_ismarine BOOLEAN,
   geom geometry(MULTIPOLYGON, 4326),
  CONSTRAINT fk_are_are_id FOREIGN KEY (are_are_id) 
  REFERENCES ref.tr_area_are (are_id) ON DELETE CASCADE
  ON UPDATE CASCADE,
  CONSTRAINT uk_are_code UNIQUE (are_code),
  CONSTRAINT fk_area_lev_code FOREIGN KEY (are_lev_code) REFERENCES
  ref.tr_level_lev(lev_code) ON UPDATE CASCADE ON DELETE CASCADE,
  CONSTRAINT fk_area_wkg_code FOREIGN KEY (are_lev_code) REFERENCES
  ref.tr_icworkinggroup_wkg(wkg_code) ON UPDATE CASCADE ON DELETE CASCADE
);")

dbExecute(con_diaspara_admin, "GRANT ALL ON ref.tr_area_are 
          TO diaspara_admin;")
dbExecute(con_diaspara_admin, "GRANT SELECT ON ref.tr_area_are 
          TO diaspara_read;")

dbExecute(con_diaspara_admin, "COMMENT ON TABLE ref.tr_area_are 
IS 'Table corresponding to different geographic levels, from stock 
to river section.';")
Table 14: Geographical level tr_level_lev
lev_code lev_description
Stock This is the highest geographic level for assessement, stock level.
Complex Corresponds to large sublevels at which the stock is assessed, e.g. NAC NEC for WGNAST, Gulf of Bothnia for WGBAST, Mediterranean for WGEEL.
Country Corresponds to one or more units, but in almost all stocks this level is relevant to split data.
Assessment_unit Corresponds to an assessment unit in the Baltic sea, and area for WGNAS, and EMU for WGEEL.
Regional Corresponds to subunits of stock assessment units or basins grouping several river. Although it is not used yet for some models, regional genetic difference or difference in stock dynamic support collecting a regional leve
River One river is a unit corresponding practically almost always to a watershed.
river_section Section of river, only a part of a basin, for instance to separate between wild and mixed river category in the Baltic.
Major Major fishing areas from ICES.
Subarea Subarea from ICES, FAO and NAFO
Division Division from ICES, GFCM and NAFO
Subdivision Subdivision level from ICES, GFCM and NAFO
Table 15: Geographic areas
are_id are_are_id are_code are_lev_code are_wkg_code are_ismarine geom
NA NA NA NA NA NA NA
------: ----------: :-------- :------------ :------------ :------------ :----
clusterA Stock clusterB Complex clusterC Country clusterD Assessment_unit clusterE Regional clusterF River clusterG River_section clusterZ Major clusterY Subareas clusterX Division clusterW Sudivision clusterV Unit
Figure 4: The nested structure layed out in table tr_area_area, dotted box indicate that the level is optional. This table will be created specifically for each group.

Data access (tr_dataaccess_dta)

Type of data Public, or Restricted

Code to create dataaccess tr_dataaccess_dta
dbExecute(con_diaspara_admin,
"DROP TABLE IF EXISTS ref.tr_dataaccess_dta CASCADE;")

dbExecute(con_diaspara_admin,
"CREATE TABLE ref.tr_dataaccess_dta(
   dta_code TEXT PRIMARY KEY,
   dta_description TEXT  
);")


tr_dataaccess_dta <- dbGetQuery(con_diaspara_admin, 
"SELECT * FROM refwgeel.tr_dataaccess_dta")

dbExecute(con_diaspara_admin,
  "INSERT INTO ref.tr_dataaccess_dta 
  SELECT * FROM refwgeel.tr_dataaccess_dta
  ;")#2

dbExecute(con_diaspara_admin, "GRANT ALL ON ref.tr_dataaccess_dta 
          TO diaspara_admin;")
dbExecute(con_diaspara_admin, "GRANT SELECT ON ref.tr_dataaccess_dta 
          TO diaspara_read;")

dbExecute(con_diaspara_admin, "COMMENT ON TABLE ref.tr_dataaccess_dta 
IS 'Table with two values, Public or Restricted access.';")

Missing data (tr_missvalueqal_mis)

This comes from wgeel.

Code to create tr_missvalueqal_mis
dbExecute(con_diaspara_admin,
"DROP TABLE IF EXISTS ref.tr_missvalueqal_mis CASCADE;")

dbExecute(con_diaspara_admin,
"CREATE TABLE ref.tr_missvalueqal_mis(
   mis_code TEXT PRIMARY KEY,
   mis_description TEXT NOT NULL,  
   mis_definition TEXT);")

dbExecute(con_diaspara_admin,
"INSERT INTO ref.tr_missvalueqal_mis 
SELECT
'NR',
'Not reported', 
'Data or activity exist but numbers are not reported to authorities (for example for commercial confidentiality reasons).';")
dbExecute(con_diaspara_admin,
"INSERT INTO ref.tr_missvalueqal_mis 
SELECT
'NC',   
'Not collected',    
'Activity / habitat exists but data are not collected by authorities (for example where a fishery exists but the catch data are not collected at the relevant level or at all).';")
dbExecute(con_diaspara_admin,
"INSERT INTO ref.tr_missvalueqal_mis 
SELECT
'NP',   
'Not pertinent',
'Where the question asked does not apply to the individual case (for example where catch data are absent as there is no fishery or where a habitat type does not exist in a stock unit).';")

dbExecute(con_diaspara_admin, "GRANT ALL ON ref.tr_missvalueqal_mis 
          TO diaspara_admin;")
dbExecute(con_diaspara_admin, "GRANT SELECT ON ref.tr_missvalueqal_mis 
          TO diaspara_read;")

dbExecute(con_diaspara_admin, "COMMENT ON TABLE ref.tr_missvalueqal_mis 
IS 'Table showing the qualification when value is missing, NC, NP, NR.';")
Table 16: Code for missing values
mis_code mis_description mis_definition
NR Not reported Data or activity exist but numbers are not reported to authorities (for example for commercial confidentiality reasons).
NC Not collected Activity / habitat exists but data are not collected by authorities (for example where a fishery exists but the catch data are not collected at the relevant level or at all).
NP Not pertinent Where the question asked does not apply to the individual case (for example where catch data are absent as there is no fishery or where a habitat type does not exist in a stock unit).

ICES areas

Download shapefiles from NAFO => create table following ICES_Areas for GUID FAO major fishing area (27, 21, 37, 34, 31) 27 Atlantic, Northeast 21 Atlantic, Northwest 37 Mediterranean and Black Sea 34 Atlantic, Eastern Central 31 Atlantic, Western Central subarea division subdivision

code 27.9.b.2 area_full area_27 9.b.2

source : GFCM geographical subareas https://www.fao.org/gfcm/data/maps/gsas/fr/ https://gfcmsitestorage.blob.core.windows.net/website/5.Data/ArcGIS/GSAs_simplified_updated_division%20(2).zip

source : NAFO divisions https://www.nafo.int/Data/GIS https://www.nafo.int/Portals/0/GIS/Divisions.zip

source : ICES statistical areas https://gis.ices.dk/shapefiles/ICES_areas.zip https://gis.ices.dk/geonetwork/srv/eng/catalog.search#/metadata/c784a0a3-752f-4b50-b02f-f225f6c815eb

The rest of the word was somewhere on my computer. Cannot trace the source, it’s exaclty the same for NAFO but changed in the med and ICES. For some reasons was not complete in table from wgeel so have to download it again to postgres.

Values for geom have been updated from ICES areas, the new boundaries are different, however, more than the previous ones. The values for Areas and Subareas have not been updated but these are for wide maps so we’ll leave it as it is.

Code to create reference fishing area maps
dbExecute(con_diaspara_admin, "DROP TABLE IF EXISTS ref.tr_fishingarea_fia 
CASCADE;")
dbExecute(con_diaspara_admin,
"
  CREATE TABLE ref.tr_fishingarea_fia
  (  
    fia_level TEXT,
    fia_code TEXT,
    fia_status numeric,
    fia_ocean TEXT,
    fia_subocean TEXT,
    fia_area TEXT,
    fia_subarea TEXT,
    fia_division TEXT,
    fia_subdivision TEXT,
    fia_unit TEXT,
    fia_name TEXT NULL,
    geom geometry(MultiPolygon,4326),
    CONSTRAINT tr_fishingarea_fia_pkey PRIMARY KEY (fia_code),
    CONSTRAINT uk_fia_subdivision UNIQUE (fia_unit)
  )
  ;
")


# start with initial FAO dataset

#area_all <- dbGetQuery(con_diaspara_admin, "SELECT * FROM area.\"FAO_AREAS\"
# WHERE f_area IN ('21','27','31','34','37') ;")

# In this table all geom are mixed from unit to division.
# It only make sense to extract for a unique f_level


# TODO add species, wk
dbExecute(con_diaspara_admin, "INSERT INTO ref.tr_fishingarea_fia
SELECT
   initcap(f_level) AS fia_level, 
   f_code AS  fia_code,
   f_status AS  fia_status,
   ocean AS  fia_ocean,
   subocean AS  fia_subocean,
   f_area AS  fia_area,
   f_subarea AS  fia_subarea,
   f_division AS  fia_division,
   f_subdivis AS  fia_subdivision,
   f_subunit AS  fia_unit,
   NULL as fia_name,
   geom 
  FROM area.\"FAO_AREAS\"
  WHERE f_area IN ('21','27','31','34','37') 
") # 187

# Replace values ices
dbExecute(con_diaspara_admin, "UPDATE ref.tr_fishingarea_fia
    set geom = st_transform(are.geom, 4326)
    FROM
    area.\"ICES_Areas_20160601_cut_dense_3857\" are
    WHERE area_full = fia_code;") # 66
# Replace values NAFO (nothing to do ...)



# Replace values GFCM
dbExecute(con_diaspara_admin, "INSERT INTO ref.tr_fishingarea_fia
SELECT 
'Subdivision' AS fia_level, 
f_gsa AS fia_code,
1 AS fia_status,
'Atlantic' AS fia_ocean, 
3 AS fia_subocean, 
f_area, 
f_subarea, 
f_division, 
f_gsa AS fia_subdivision,
NULL AS fia_unit,
smu_name AS fia_name,
geom
FROM area.\"GSAs_simplified_division\";") # 32

dbExecute(con_diaspara_admin, "GRANT ALL ON ref.tr_fishingarea_fia 
          TO diaspara_admin;")
dbExecute(con_diaspara_admin, "GRANT SELECT ON ref.tr_fishingarea_fia 
          TO diaspara_read;")

dbExecute(con_diaspara_admin, "COMMENT ON TABLE ref.tr_fishingarea_fia 
IS 'Table of fishing areas, attention, different levels of geometry
details are present in the table, area, subarea, division, subdivision, unit,
most query will use WHERE 
 fia_level = ''Subdivision''';")
Coderedce to create a map of fishing areas at Major level
library(rnaturalearth)
world <- ne_countries(scale = "small", returnclass = "sf")


if (file.exists("data/fishingareas_major.Rdata")) 
load("data/fishingareas_major.Rdata") else {
fishing_areas_major <- sf::st_read(con_diaspara,
                          query = "SELECT fia_code, ST_MakeValid(geom) 
                          from ref.tr_fishingarea_fia
                          WHERE fia_level = 'Major'") %>%
  sf::st_transform(4326) 
save(fishing_areas_major, file="data/fishing_areas_major.Rdata")
}
load("data/country_sf.Rdata")
crs_string <- "+proj=ortho +lon_0=-30 +lat_0=30"

ocean <- sf::st_point(x = c(0,0)) %>%
  sf::st_buffer(dist = 6371000) %>%
  sf::st_sfc(crs = crs_string)
area_sf2 <-  fishing_areas_major %>% 
  sf::st_intersection(ocean %>% sf::st_transform(4326)) %>% 
  sf::st_transform(crs = crs_string) 

country_sf2 <-  country_sf %>% 
  sf::st_intersection(ocean %>% sf::st_transform(4326)) %>% 
  sf::st_transform(crs = crs_string) 



g <- ggplot() + 
  geom_sf(data = ocean, fill = "deepskyblue4", color = NA) + 
  geom_sf(data = area_sf2, aes(fill = fia_code), color="white", lwd = .1) + 
  geom_sf(data = world, fill="black", color="grey20") + 
  geom_sf(data= country_sf2 , fill= "grey10",color="grey30")  +
  theme_void()
  #scale_fill_discrete(guide = "none") +

  
# this part is used to avoid long computations
png(filename="images/fig-fishingareas_major.png",width=600, height=600, res=300, bg="transparent")
print(g)
dev.off()
Figure 5: Map of ICES fishing areas at Major level, source NAFO, FAO, ICES, GFCM.
Code to create a map of fishing areas at Subarea level
if (file.exists("data/fishingareas_subarea.Rdata")) load("data/fishingareas_subarea.Rdata") else {
fishing_areas_subarea <- sf::st_read(con_diaspara,
                          query = "SELECT fia_code, ST_MakeValid(geom) 
                          from ref.tr_fishingarea_fia
                          WHERE fia_level = 'Subarea'") %>%
  sf::st_transform(4326) 
save(fishing_areas_subarea, file="data/fishing_areas_subarea.Rdata")
}
crs_string <- "+proj=ortho +lon_0=-30 +lat_0=30"

area_sf2 <-  fishing_areas_subarea %>% 
  sf::st_intersection(ocean %>% sf::st_transform(4326)) %>% 
  sf::st_transform(crs = crs_string) # reproject to ortho

g <- ggplot() + 
  geom_sf(data = ocean, fill = "deepskyblue4", color = NA) + 
  geom_sf(data = area_sf2, aes(fill = fia_code), color="white", lwd = .1) + 
  geom_sf(data = world, fill="black", color="grey20") + 
  geom_sf(data= country_sf2 , fill= "grey10",color="grey30")  +
  scale_fill_discrete(guide = "none")  +
  theme_void()

# this part is used to avoid long computations
png(filename="images/fig-fishingareas_subarea.png", bg="transparent")
print(g)
dev.off()
Figure 6: Map of ICES fishing areas at Subarea level, source NAFO, FAO, ICES, GFCM.
Code to create a map of fishing areas at Division level
if (file.exists("data/fishingareas_division.Rdata")) load("data/fishingareas_division.Rdata") else {
fishing_areas_division <- sf::st_read(con_diaspara,
                          query = "SELECT fia_code, ST_MakeValid(geom) 
                          from ref.tr_fishingarea_fia
                          WHERE fia_level = 'Division'") %>%
  sf::st_transform(4326) 
save(fishing_areas_division, file="data/fishing_areas_division.Rdata")
}

crs_string <- "+proj=ortho +lon_0=-30 +lat_0=30"


ocean <- sf::st_point(x = c(0,0)) %>%
  sf::st_buffer(dist = 6371000) %>%
  sf::st_sfc(crs = crs_string)
  
area_sf2 <-  fishing_areas_division %>% 
  sf::st_intersection(ocean %>% sf::st_transform(4326)) %>% 
  sf::st_transform(crs = crs_string) 

g <- ggplot() + 
  geom_sf(data = ocean, fill = "deepskyblue4", color = NA) + 
  geom_sf(data = area_sf2, aes(fill = fia_code), color="white", lwd = .1) + 
  geom_sf(data = world, fill="black", color="grey20") + 
  geom_sf(data= country_sf2 , fill= "grey10",color="grey30")  +
  scale_fill_discrete(guide = "none") +
  theme_void()

png(filename="images/fig-fishingareas_division.png", bg="transparent")
print(g)
dev.off() 
Figure 7: Map of ICES fishing areas at division level, source NAFO, FAO, ICES, GFCM.
Code to create a map of fishing areas at subdivision level
if (file.exists("data/fishingareas_subdivision.Rdata")) load("data/fishingareas_subdivision.Rdata") else {
fishing_areas_subdivision <- sf::st_read(con_diaspara,
                          query = "SELECT fia_code, ST_MakeValid(geom) 
                          from ref.tr_fishingarea_fia
                          WHERE fia_level = 'Subdivision'") %>%
  sf::st_transform(4326) 
save(fishing_areas_subdivision, file="data/fishing_areas_subdivision.Rdata")
}

crs_string <- "+proj=ortho +lon_0=-30 +lat_0=30"


ocean <- sf::st_point(x = c(0,0)) %>%
  sf::st_buffer(dist = 6371000) %>%
  sf::st_sfc(crs = crs_string)
  
area_sf2 <-  fishing_areas_subdivision %>% 
  sf::st_intersection(ocean %>% sf::st_transform(4326)) %>% 
  sf::st_transform(crs = crs_string) 

g <- ggplot() + 
  geom_sf(data = ocean, fill = "deepskyblue4", color = NA) + 
  geom_sf(data = area_sf2, aes(fill = fia_code), color= "white", lwd = .1) + 
  geom_sf(data = world, fill="black", color="grey20") + 
  geom_sf(data= country_sf2 , fill= "grey10",color="grey30")  +
  scale_fill_discrete(guide = "none") +
  theme_void()

png(filename="images/fig-fishingareas_subdivision.png", bg="transparent")
print(g)
dev.off() 
Figure 8: Map of ICES fishing areas at subdivision level, source NAFO, FAO, ICES, GFCM.

SCHEMA datnas

Code to import to refnas work in progress …
# TODO create tr_area_are
# tr_metadata_met





res <- dbGetQuery(con_diaspara, "SELECT * FROM refnas.tr_metadata_met;")
clipr::write_clip(colnames(res))

data.frame(
met_var= dbGetQuery(con_salmoglob, "SELECT var_mod FROM metadata"),
met_spe_code = 'NAS',
met_wkg_code = 'WGNAS',
met_ver_code = TODO
met_oty_code
met_nim_code
met_dim
met_dimname
met_modelstage
met_type
met_location
met_fishery
met_mtr_code
met_oco_code
met_uni_code
met_cat_code
met_definition
met_deprecated
Creating the referential for WGNAS , work in progress …


DROP TABLE IF EXISTS refnas.tr_metadata_met;

CREATE TABLE refnas.tr_metadata_met()
INHERITS (ref.tr_metadata_met);


-- ADDING CONSTRAINTS

ALTER TABLE refnas.tr_metadata_met ADD
 CONSTRAINT t_metadata_met_pkey PRIMARY KEY(met_var, met_spe_code);
 
ALTER TABLE refnas.tr_metadata_met ADD 
  CONSTRAINT fk_met_spe_code FOREIGN KEY (met_spe_code)
  REFERENCES ref.tr_species_spe(spe_code) 
  ON DELETE CASCADE
  ON UPDATE CASCADE;

 ALTER TABLE refnas.tr_metadata_met ADD
    CONSTRAINT ck_met_spe_code CHECK (met_spe_code='SAL'); 

 ALTER TABLE refnas.tr_metadata_met ADD
    CONSTRAINT fk_met_wkg_code FOREIGN KEY (met_wkg_code)
  REFERENCES ref.tr_icworkinggroup_wkg(wkg_code) 
  ON DELETE CASCADE
  ON UPDATE CASCADE;

ALTER TABLE refnas.tr_metadata_met ADD
    CONSTRAINT ck_met_wkg_code CHECK (met_wkg_code='WGNAS');


ALTER TABLE refnas.tr_metadata_met ADD
  CONSTRAINT fk_met_ver_code FOREIGN KEY (met_ver_code)
  REFERENCES ref.tr_version_ver(ver_code) 
  ON DELETE CASCADE
  ON UPDATE CASCADE;

ALTER TABLE refnas.tr_metadata_met ADD
  CONSTRAINT fk_met_oty_code FOREIGN KEY (met_oty_code) 
  REFERENCES ref.tr_objecttype_oty (oty_code) ON DELETE CASCADE
  ON UPDATE CASCADE;

ALTER TABLE refnas.tr_metadata_met ADD
  CONSTRAINT fk_met_nim_code FOREIGN KEY (met_nim_code) 
  REFERENCES ref.tr_nimble_nim (nim_code) ON DELETE CASCADE
  ON UPDATE CASCADE;

ALTER TABLE refnas.tr_metadata_met ADD  
  CONSTRAINT fk_met_mtr_code FOREIGN KEY (met_mtr_code)
  REFERENCES ref.tr_metric_mtr(mtr_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE;

ALTER TABLE refnas.tr_metadata_met ADD
  CONSTRAINT fk_met_uni_code FOREIGN KEY (met_uni_code)
  REFERENCES ref.tr_units_uni(uni_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE;

ALTER TABLE refnas.tr_metadata_met ADD
  CONSTRAINT fk_met_cat_code FOREIGN KEY (met_cat_code)
  REFERENCES ref.tr_category_cat(cat_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE;

ALTER TABLE refnas.tr_metadata_met ADD
  CONSTRAINT fk_met_oco_code FOREIGN KEY (met_oco_code)
  REFERENCES ref.tr_outcome_oco(oco_code)
  ON DELETE CASCADE
  ON UPDATE CASCADE;


--  COMMENTS FOR WGNAS


COMMENT ON TABLE refnas.tr_metadata_met IS 
'Table (metadata) of each variable (parameter) in the wgnas database.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_var 
IS 'Variable code, primary key on both met_spe_code and met_var.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_spe_code 
IS 'Species, SAL primary key on both met_spe_code and met_var.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_ver_code 
IS 'Code on the version of the model, see table tr_version_ver.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_oty_code 
IS 'Object type, single_value, vector, matrix see table tr_objecttype_oty.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_nim_code 
IS 'Nimble type, one of data, constant, output, other.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_dim 
IS 'Dimension of the Nimble variable, use {10, 100, 100} 
to insert the description of an array(10,100,100).';
COMMENT ON COLUMN refnas.tr_metadata_met.met_dimname 
IS 'Dimension of the variable in Nimble, use {''year'', ''stage'', ''area''}.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_modelstage 
IS 'Currently one of fit, other, First year.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_type 
IS 'Type of data in the variable, homewatercatches, InitialISation first year,
abundance ....';
COMMENT ON COLUMN refnas.tr_metadata_met.met_location 
IS 'Describe process at sea, e.g. Btw. FAR - GLD fisheries, or Aft. Gld fISheries.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_fishery 
IS 'Description of the fishery.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_oco_code 
IS 'Outcome of the fish, e.g. Released (alive), Seal damage,
Removed (from the environment), refnaserences table tr_outcome_oco.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_uni_code 
IS 'Unit, refnaserences table tr_unit_uni.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_cat_code 
IS 'Broad category of data or parameter, 
catch, effort, biomass, mortality, count ...refnaserences table tr_category_cat.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_mtr_code 
IS 'Code of the metric, refnaserences tr_metric_mtr, Estimate, Bound, SD, CV ....';
COMMENT ON COLUMN refnas.tr_metadata_met.met_definition 
IS 'Definition of the metric.';
COMMENT ON COLUMN refnas.tr_metadata_met.met_deprecated
IS'Is the variable still used ?';

GRANT ALL ON refnas.tr_metadata_met TO diaspara_admin;
GRANT SELECT ON refnas.tr_metadata_met TO diaspara_read;

WORK IN PROGRESS….

This document is still in construction Structure of the db (still in construction)

Acknowledgements

  • Data source : EuroGeographics and UN-FAO for countries
 

EU is not reponsible for the content of the project